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Energetic contributions to wall-particle depletion forces

P. Gonza´lez-Mozuelos and J. M. Me´ndez-Alcaraz
Departamento de Fı´sica, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, 07300 Me´xico, D.F., Mexico

~Received 24 August 2000; published 9 January 2001!

Recently, depletion forces were accounted for by a contraction of the description based on the integral
equations theory of simple liquids@Phys. Rev. E61, 4095~2000!#. The extension of those results to the case
of inhomogeneous systems is reported here. Besides, the energetic contributions to the wall-particle depletion
forces are studied, as they arise as soon as charge is put on some of the components of a binary mixture of hard
spheres on the front of a hard wall. By charging the small particles the amplitude of the depletion attraction
between wall and large particles is reduced, and can even become a repulsion. A similar effect is observed if
an attractive interaction between wall and small particles is present.
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I. INTRODUCTION

The term depletion forces originally refers to the attra
tion between two colloidal particles arising when macrom
ecules are put into the suspension@1,2#. This results from the
expulsion of added macromolecules from the gap betw
two approaching particles, giving rise to an imbalance
tween the osmotic pressures within the gap and outsid
The phenomenon has been successfully studied in the u
case that the system can be modeled as a binary mixtu
hard spheres@3–9#. Therefore, depletion forces have be
accepted as a special case of the entropic forces respon
for the rich phase behavior of hard particles systems. H
ever, recent experimental and theoretical results show
depletion forces can be strongly affected if van der Waals
Coulombic interactions are present in the system@10,11#.
They may reduce the amplitude of the depletion attractio
contact, or even invert it to a repulsion. As shown
Méndez-Alcaraz and Klein@12#, this behavior can be bette
understood by considering depletion forces as a special
of the more general effective interactions resulting from
contraction of the description of liquid mixtures. Therefo
if certain components of a mixture are not explicitly cons
ered, their influence on the structure of the remaining p
ticles has to be included in the interaction potential. T
latter is obtained by demanding the spatial distribution of
remaining particles to be the same as in the original mixtu
Technically, this is done by rewriting the Ornstein-Zerni
equation for the original mixture as an effective Ornste
Zernike equation for the remaining particles, and connec
it with the effective interaction potential using an appropria
closure relation. This idea was first implemented by Medi
Noyola and McQuarrie in order to calculate the interact
between two charged macroions immersed in a bath of s
counterions and salt ions@13#, as well as in further ap-
proaches to the same problem@14#.

In Ref. @12# Méndez-Alcaraz and Klein studied the depl
tion forces in homogeneous mixtures of large hard sphe
immersed in a bath of charged or uncharged small h
spheres. The behavior near a hard wall was obtained in
dilute limit by indefinitely increasing the diameter of one
the large components of a ternary mixture of hard sphe
That approach, however, is not suitable to describe deple
1063-651X/2001/63~2!/021201~8!/$15.00 63 0212
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forces in more general cases of inhomogeneous systems
example, when the wall has a relief pattern, or when
confining geometry is more complex. The general probl
of the theoretical determination of the structure of inhom
geneous colloidal suspensions has received a conside
amount of attention in the last decade. Two main approac
have been considered for the determination of the local c
centration of colloidal particles: one based on the implem
tation of Ornstein-Zernike~OZ! equations for the concentra
tion profile, also known as integral equations methods@15–
23#, and the other one based on the density functional the
~DFT! @9,24–27#. With regard to the relative merits of eac
approach it can be said that the DFT methods provid
quantitatively better description of the spatial distribution
particles, but the approach based on the OZ equations is
easier to implement, and also provides a very good qua
tive description of the concentration profiles. In particul
the positions of the maxima and minima of those profiles
very well accounted for by the integral equation metho
Even more, the OZ equations are the natural starting p
for the implementation of the contraction formalism fro
which the effective external potentials are determined, as
explain in Sec. II. In that section, we also present a br
discussion about the connection between the DFT and
OZ equations. Our results are then used in Secs. III and IV
order to study the energetic contributions to the wall-parti
depletion forces arising from the charging of some of t
components of a binary mixture of hard spheres in front o
hard wall. Finally, the paper is closed with a section of co
clusions.

II. EFFECTIVE POTENTIALS

The structure of a homogeneous liquid mixture ofp
spherical components can be determined from the OZ eq
tion @28#,

h̃i j ~q!5 c̃i j ~q!1 (
k51

p

nkh̃ik~q!c̃k j~q!; i , j 51,•••,p,

~1!

written here in the Fourier space~this feature being indicated
by the tilde, as well as by the dependence on the wave n
©2001 The American Physical Society01-1



e
-

ion

Eq

of

y
te

er
s
t
re
pe
l r
hi
n

ed

ob
r

rip-
ro-

ous
ical

ies
r-

the
ion

e-

t

o-

o-

be

on
er
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ber q), complemented with suitable closure relations b
tweenhi j (r ) and ci j (r ) which also involve the correspond
ing pair potentialsui j (r ) and have the general form@28#

ci j ~r !52bui j ~r !1hi j ~r !2 ln@11hi j ~r !#1bi j ~r !, ~2!

with some appropriate approximation for the bridge funct
bi j (r ). The functionsh̃i j (q) and c̃i j (q) are the total and di-
rect correlation functions, respectively. The coefficientsnk
are the partial number densities. With a matrix notation
~1! takes the form

H~q!5C~q!1C~q!NH~q!, ~3!

whereH(q), C(q) andN are symmetric square matrices
components@H(q)# i j 5h̃i j (q), @C(q)# i j 5 c̃i j (q), and @N# i j
5nid i j .

The structure of liquid mixtures is usually studied b
means of experimental techniques that are unable to de
all the components. For example, light scattering exp
ments do not detect the salt ions nor the water molecule
an aqueous suspension of polystyrene spheres, excep
their effects on the structure of the colloidal particles. The
fore, models including the experimentally unobserved s
cies are necessary in order to interpret the experimenta
sults for the observed components. According to t
distinction between observed and unobserved compone
the matrices appearing in Eq.~3! can be partitioned in
blocks,

X5S XAA XAB

XBA XBB
D ,

and Eq.~3! itself can be rewritten as

HAA~q!5CAA~q!1CAA~q!NAAHAA~q!

1CAB~q!NBBHBB~q!, ~4!

HBB~q!5CBB~q!1CBB~q!NBBHBB~q!

1CBA~q!NAAHAA~q!. ~5!

The indicesA and B refer to the observed and unobserv
subsets, respectively. Solving Eq.~5! for HBB(q) and substi-
tuting the result into Eq.~4! yields

HAA~q!5CAA
eff ~q!1CAA

eff ~q!NAAHAA~q!, ~6!

where

CAA
eff ~q!5CAA~q!1CAB~q!@NBB

212CBB~q!#21CBA~q!.
~7!

Equation~6! has the same structure as Eq.~3! and can there-
fore be interpreted as an effective OZ equation for the
served components. Besides,CAA

eff (q) can be used togethe
with a closure relation of the general form

ci j
eff~r !52bui j

eff~r !1hi j ~r !2 ln@11hi j ~r !#1bi j
eff~r ! ~8!
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in order to obtain the effective interaction potentialsui j
eff(r )

between observed particles. This contraction of the desc
tion is the origin of depletion forces when the added mac
molecules are the unobserved species@12#.

In order to extend the previous results to inhomogene
systems, let us consider a multicomponent fluid of spher
particles subject to the action of external fields. Letcwi(r )
be the external potential acting on all the particles of spec
i at positionr . The equilibrium local number density of pa
ticles of this species atr , denoted byni(r ), is related to the
corresponding external potential by the equation

ni~r !5zi exp~2bcwi~r !1ci
(1)@$n~r !%,r # !, ~9!

wherezi is the fugacity of speciesi, andci
(1)@$n(r )%,r # is a

functional of the local concentration which represents
contribution to the chemical potential due to the interact
of a particle of speciesi located atr with all the other par-
ticles in the system. The functionalci

(1)@$n(r )%,r # is also the
generator of a hierarchy of direct correlation functions d
fined by

ci j . . . l
(m11)@$n~r !%,r1 ,r2 , . . . ,rm11#5

dmci
(1)@$n~r !%,r1#

dnj~r2!•••dnl~rm11!
.

~10!

In particular,ci j
(2)@$n(r )%,r1 ,r2# corresponds to the OZ direc

correlation function between speciesi and j of the nonuni-
form fluid. Let us also assume that the system is in therm
dynamic equilibrium with an infinity reservoir within which
cwi(r )50, for all i. The local concentration of each comp
nent is then uniform within the reservoir,ni being the corre-
sponding bulk number density of speciesi. Taking the func-
tional Taylor expansion ofci

(1)@$n(r )%,r1# with respect to
the conditions in the reservoir it is found that this can
rewritten as

ci
(1)@$n~r !%,r1#5 ln

ni

zi
1(

j 51

p E d3r2ci j ~ ur12r2u!

3@nj~r2!2nj #1bwi~r1!, ~11!

where ci j (ur12r2u)5ci j
(2)@$n(r )%5$n%,r1 ,r2# is the direct

correlation function in the reservoir, and the bridge functi
bwi(r1) is the sum of the corresponding third and high
order terms of this expansion. Therefore, Eq.~9! can be re-
written with the form of the OZ equation:

hwi~r !5cwi~r !1(
j 51

p

njE d3r 8ci j ~ ur2r 8u!hw j~r 8!;

i 51,•••,p, ~12!

where use has been made of the definitions

hwi~r ![
ni~r !

ni
21 ~13!

and
1-2
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cwi~r ![2bcwi~r !1hwi~r !2 ln@11hwi~r !#1bwi~r !.
~14!

Equations~12! and~14! are the OZ equation for the conce
tration profile and the general form of its closure relatio
respectively. They are exact and provide a general metho
calculate the local concentrations of particles induced by
ternal fields, if the direct correlation functions in the res
voir and the functional dependence ofbwi(r ) are known. In
practice, however, it is necessary to introduce some appr
mations at this level, since this information is usually lac
ing.

As in the homogeneous case, we can also use a m
notation here. In Fourier space Eq.~12! leads to

Hw~q!5Cw~q!1C~q!NHw~q!, ~15!

where Hw(q) and Cw(q) are column vectors with compo
nents@Hw(q)# i5h̃wi(q) and @Cw(q)# i5 c̃wi(q). The square
matricesC(q) andN refer to the homogeneous reservoir a
are the same as in Eq.~3!. This equation can also be part
tioned in blocks according to the distinction between o
served~A! and unobserved~B! species:

HwA~q!5CwA~q!1CAA~q!NAAHwA~q!

1CAB~q!NBBHwB~q!, ~16!

HwB~q!5CwB~q!1CBB~q!NBBHwB~q!

1CBA~q!NAAHwA~q!. ~17!

Solving Eq.~17! for HwB(q) and substituting the result int
Eq. ~16! yields

HwA~q!5CwA
eff ~q!1CAA

eff ~q!NAAHwA~q!, ~18!

where

CwA
eff ~q!5CwA~q!1CAB~q!@NBB

212CBB~q!#21CwB~q!,
~19!

andCAA
eff (q) is given by Eq.~7!. By analogy with Eq.~14! it

seems natural to define the corresponding effective exte
potentialscwi

eff(r ) by the equation

cwi
eff~r ![2bcwi

eff~r !1hwi~r !2 ln@11hwi~r !#1bwi
eff~r !.

~20!

A suitable approximation forbwi
eff(r ) should be used here i

order to get a closed set of equations.
In order to calculate the effective external potenti

cwi
eff(r ), we have first to determine the direct correlation fun

tions ci j (r ) in the reservoir by solving Eqs.~1! and ~2!.
Then, cwi

eff(r ) can be determined according to Eq.~19! by
solving Eqs.~12! and ~14!. Finally, cwi

eff(r ) can be deter-
mined by means of Eq.~20!. In the process, some approx
mations for the bridge functionsbi j (r ),bwi(r ) and bwi

eff(r )
must be introduced. The kind of approximations used in t
work will be discussed in Sec. III.
02120
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III. MODEL AND APPROXIMATIONS

In order to model suspended hard spheres~labeled here as
species 1! and charged or uncharged macromolecules~spe-
cies 2! on the front of a hard wall we take the interpartic
interaction potential

bui j ~r !51` for r ,s i j [
s i1s j

2
,

5Ki j

e2kr

r
for r>s i j , ~21!

and the potential

bcwi~x!51` for x,
s i

2
,

5Kwie
2kx for x>

s i

2
~22!

between particles and wall,s i being the diameter of the
componenti. The valuesK115K125K215Kw150 ensure
the hard core interaction between the colloidal particles,
between them and the other components~polymer coils and
wall!. By takingK22>0 the macromolecules are modeled
Yukawa spheres, which assumes that the polymer conce
tion is within the highly dilute regime and that the ion
concentration is high enough to consider that the configu
tion of each coil is basically globular. It should be noted th
the Yukawa model is itself an effective potential resulti
from the contraction of the solvent molecules and of t
small ions~counterions and salt ions! from the description of
the original system; their effects are contained inK22 and in
k. In addition,K22 goes as the square of the charge of t
coils @13,14#. Furthermore, by takingKw2Þ0, a Coulombic
interaction between coils and wall is accounted for within t
Yukawa model; the value ofKw2 depends on the product o
the charge of the polymer coils and the surface charge d
sity on the wall@15#. Moreover, Eq.~22! can also be seen a
a rough model for polymer-wall van der Waals interaction
with Kw2 staying for the Hamaker constant, andk account-
ing for the range of the potential.

The wall-particle depletion potentialcw1
eff (x) is obtained

by taking the polymer coils out of the picture. It is done he
within the mean spherical approximation~MSA! @28#:

hw1~x!521 for x,
s1

2
,

cw1
eff ~x!52bcw1

eff ~x! for x>
s1

2
, ~23!

obtained from Eq.~20! after neglectingbw1
eff (x) and lineariz-

ing the logarithm. With Eq.~19!, it leads tobcw1
eff (x)51`

for x,s1/2 and
1-3
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bcw1
eff ~x!52cw1~x!22pn2E

2`

`

dx8cw2~x8!

3E
ux2x8u

`

ds sF 21H c̃21~q!

@12n2c̃22~q!#
J ~24!

for x>s1/2, where the involved integral was rewritten in
simple form @29# (F 21 denotes an inverse Fourier tran
form!. When the system consists only of hard objects (K22
5Kw250) we get for the infinite dilute limit ofn1, up to
linear terms inn2,

bcw1
eff ~x!522pn2E

2`

`

dx8cw2~x8!E
ux2x8u

`

ds s c21~s!,

~25!

with c21(r )521 for r ,s21 and 0 elsewhere, andcw2(x)
521 for x,s2/2 and 0 elsewhere. After integratting th
equation we recover the Asakura-Oosawa potential for a
ticle near a hard wall@12#, a result also derived by Go¨tzel-
mannet al. @7# by a rather different method:

bcw1
eff ~h!52w2S h

s2
21D 2S 113

s1

s2
12

h

s2
D ~26!

for 0<h,s2 and 0 for larger distances. Here,h5x2s1/2 is
the distance from the surface of one particle of species 1
the wall, andw i5pnis i

3/6 the volume fraction of speciesi.
Expression~26! has been found to be an excellent appro
mation by comparison with direct measurements of deple
potentials in inhomogeneous mixtures of colloid and no
ionic polymers@30#. In the same dilute limit it is also pos
sible to get analytical results forbcw1

eff (x) whenKw2Þ0 by
putting in Eq. ~25! cw2(x)521 for x,s2/2 and
2Kw2e2kx for x>s2/2. However, such approximations b
come inappropriate since they neglect the correlation
tween coils, which may be dominant when charge is pres

In the general case we use Eq.~18! for x>s1/2, rewritten
in the form @29#

bcw1
eff ~x!52hw1~x!22pn1E

2`

`

dx8hw1~x8!

3E
ux2x8u

`

ds s c11
eff~s! ~27!

instead of Eq.~24!, since in this way we avoid calculatin
cwi(x) for x,s i /2. An accurate input for the correlatio
functions in Eq.~27! is necessary. We determine them
using MSA for the correlations involving hard spheres:

h11,12~r !521 for r ,s11,12,

c11,12~r !52bu11,12~r ! for r>s11,12, ~28!

and the hypernetted chain approximation~HNC! @28# for the
charged component:

c22~r !52bu22~r !1h22~r !2 ln@11h22~r !#. ~29!
02120
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Combined with Eq.~1!, these closures provide a complete s
of integral equations that we numerically solve forc11(r ),
c12(r )5c21(r ), and c22(r ) by means of a five parameter
version of the Ng method@31#. The wall-particle correlations
are then obtained from Eq.~12! by using also MSA:

hw1,2~x!521 for x,
s1,2

2
,

cw1,2~x!52bcw1,2~x! for x>
s1,2

2
. ~30!

The resulting equations are linear and we solve them
cw1(x) andcw2(x) by means of the same numerical schem
applied in previous works@15#. In Sec. IV we present the
results obtained from the scheme resumed here, varying
different parameters that characterize this model in orde
analyze their impact on the general behavior ofbcw1

eff (x).

IV. RESULTS AND DISCUSSION

All the effective wall-particle potentials presented in th
section correspond to a size ratios1 /s2510 and to a dimen-
sionless screening parameterks251.38, which are typical
values. The results shown in Figs. 1~a! and 1~b! correspond
to the infinite dilute limit of macroparticles (w150) in front
of a neutral wall (Kw250) for two different concentrations
of unobserved particles:w250.008 andw250.02, respec-
tively. They illustrate the process in which the electrosta
repulsion between the polymer globules is increased, star
with neutral coils (K2250, solid line!, passing throughK22
510 ~dashed line! and K22550 ~dotted line!, and finally
reachingK225156 ~circles!. It can be immediately appreci
ated that during the charging process the effective w
macroparticle potentialbcw1

eff (x) becomes more structured
i.e., longer ranged and with wider oscillations. In particul
the attractive well at contact (x5s1/2) that this potential
exhibits whenK2250 is gradually transformed into a repu
sive barrier when the repulsion among the unobserved
ticles is incremented. This last feature is attributable to
increased concentration of small particles in the immed
vicinity of the wall induced by the electrostatic pushing e
erted by the remaining small particles, i.e., those located
ther from the wall, a characteristic that has been describe
previous works@15#.

From the comparison of Figs. 1~a! and 1~b! it also be-
comes clear that the effects described above are even m
noticeable for higher concentrations of polymer globul
This complementary process is more clearly illustrated
Fig. 2, which again presents the results corresponding to
infinite dilution of macroparticles (w150) in front of a neu-
tral wall (Kw250), but explicitly showing the evolution o
bcw1

eff (x) when the pair interaction among the unobserv
particles is kept fixed@K2250 in Fig. 2~a! and K22510 in
Fig. 2~b!# while their concentration is increased fromw2
50.008 ~solid line!, to w250.02 ~dashed line!, and then to
w250.08 ~dotted line!. In the case of neutral polymer glob
ules @K2250, Fig. 2~a!#, this process leads to a larger an
larger attraction at contact whereas at the same time a
1-4
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ticeable barrier develops at a distance of roughlys2 from
contact, i.e., a distance corresponding to the position of
first layer of polymer globules adjacent to the wall, featu
that have been previously discussed by other authors@6,12#.
In the case of charged polymer globules@K22510, Fig. 2~b!#
the contact value ofbcw1

eff (x) becomes instead more repu
sive whenw2 is increased, leading to a large barrier in t
vicinity of the wall for the maximum value ofw2 illustrated
in Fig. 2~b!.

The effects of a finite concentration of macroparticles
illustrated in Figs. 3–6, which show results of the effecti
wall-particle potentials that correspond toKw250 ~hard
wall! andw250.02. In particular, Figs. 3, 4, and 5 show th
comparison of the results forw150 ~solid line! with the
results corresponding tow150.2 ~dashed line! for the fol-
lowing values:K2250 ~Fig. 3!, K22510 ~Fig. 4!, and K22
550 ~Fig. 5!. In these three figures we can distinguish tw

FIG. 1. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the electrostatic repulsion betw
added macromolecules increases; starting with neutral coilsK22

50, solid lines!, passing throughK22510 ~dashed lines! and K22

550 ~dotted lines!, and finally reachingK225156 ~circles!. The
displayed results correspond to the infinite dilute limit of macrop
ticles (w150) in front of a neutral hard wall (Kw250) for two
different concentrations of unobserved particles;~a! w250.008 and
~b! w250.02.
02120
e
s
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separate regions. In the region closest to the wall (x&s1),
the most noticeable change on the shape ofbcw1

eff (x) due to
the increment of the macroparticle concentration is again
amplification of the oscillations contained within this regio
In the case of neutral unobserved particles~Fig. 3!, the at-
traction at contact becomes deeper and the first peak
comes higher when the concentration of macroparticles
increased. For the cases of charged polymer globules~Figs. 4
and 5!, the potential barrier adjacent to the wall becom
more repulsive whereas the first valley becomes more att
tive whenw1 is incremented. Besides, in the second reg
(x*s1) the effective wall-macroparticle potentials in the
three figures exhibit an oscillatory, although relatively sma
structure in the case ofw150.2 that is absent in the case o
w150. The structure ofbcw1

eff (x) in this second region turns
out to be roughly similar for the three different values
K22, although once again the amplitude of its oscillations
incremented, while the positions of the correspond

-
n

-

FIG. 2. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the concentration of added macrom
ecules increases; starting withw250.008 ~solid lines!, passing
through w250.02 ~dashed lines!, and finally reachingw250.08
~dotted lines!. The displayed results correspond to the infinite dilu
limit of macroparticles (w150) in front of a neutral hard wall
(Kw250) for two different values of the electrostatic repulsion b
tween the unobserved particles;~a! K2250 and~b! K22510.
1-5
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maxima and minima remain almost invariant, when this
rameter is increased. This feature can be better appreciat
Fig. 6, which shows the comparison of the graphics of
effective wall-macroparticle potentials corresponding tow1
50.2 for K2250 ~solid line!, K22510 ~dashed line!, and
K22550 ~dotted line!. An important feature shown in Fig.
is the length scale of the oscillations observed in it, which
roughly of the order ofs1, in contrast with the length scal
of the oscillations in the regionx&s1, which is roughly of
the order ofs2. This feature seems to indicate that the lon
ranged structure ofbcw1

eff (x) is induced by the ‘‘holes’’ in
the distribution of unobserved particles created by the p
ence of the macroparticles. Although the amplitudes of
oscillations observed in Fig. 6 are rather small, it is to

FIG. 3. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the concentration of macroparticles
creases; going fromw150 ~solid line! to w150.2 ~dashed line! in
front of a neutral hard wall (Kw250). The displayed results corre
spond to a concentrationw250.02 of neutral macromolecule
(K2250).

FIG. 4. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the concentration of macroparticles
creases; going fromw150 ~solid line! to w150.2 ~dashed line! in
front of a neutral hard wall (Kw250). The displayed results corre
spond to a concentrationw250.02 of charged macromolecule
(K22510).
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expected that this long-ranged structure will become m
relevant for larger values ofw2.

Finally, Fig. 7 illustrates the process of varying the su
face charge density of the wall while keeping fixed all t
other parameters. The results presented in this figure co
spond tow150, w250.02, K22550, and to the sequenc
Kw252 ~solid line!, Kw250 ~dashed line!, and Kw2522
~dotted line!. As the wall becomes more attractive with r
gard to the unobserved particles, the effective wa
macroparticle potential becomes ever more repulsive at c
tact, and even for the relatively narrow range of values
Kw2 represented in this figure the change on the con

-
-

-
-

FIG. 5. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the concentration of macroparticles
creases; going fromw150 ~solid line! to w150.2 ~dashed line! on
front of a neutral hard wall (Kw250). The displayed results corre
spond to a concentrationw250.02 of charged macromolecule
(K22550).

FIG. 6. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) in the far region (x*s1) changes when the electro
static repulsion between added macromolecules increases; sta
with neutral coils (K2250, solid line!, passing throughK22510
~dashed line!, and finally reachingK22550 ~dotted line!. The dis-
played results correspond to the concentrationw150.2 of macro-
particles in front of a neutral hard wall (Kw250), and to a concen-
tration w250.02 of unobserved particles.
1-6
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value of this effective potential turns out to be quite impo
tant. This effect is also explained by the larger or sma
number of charged polymer globules located on the surf
of the wall when it becomes more attractive or more rep
sive, and by the way that these globules in turn push
macroparticles away from the wall. The effective interacti
of the wall on the macroparticles is then influenced by
surface charge density of the former even though the ma
particles themselves are neutral.

V. CONCLUSIONS

Recently, it has been shown how depletion potent
arise from contracting the full integral equation theory o
p-component mixture to an effective description on a le
which includes explicitly less thanp components@12#. In this
paper, we extended those results to the case of inhom
neous systems. In the simplest case of a binary mixturep

FIG. 7. The figure shows how the wall-particle depletion pote
tial bcw1

eff (x) changes when the surface charge density of the w
varies; starting with an attractive wall (Kw2522, dotted line!,
passing through a neutral wall (Kw250, dashed line!, and finally
reaching a repulsive wall (Kw252, solid line!. The displayed re-
sults correspond to the infinite dilute limit of macroparticles (w1

50) and to the concentrationw250.02 of charged macromolecule
(K22550).
tte

A
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52) on the front of a wall one obtains as effective descr
tion an inhomogeneous one-component system of parti
interacting between them, and with the wall through pote
tials depending parametrically on the contracted compon
The approach developed in this paper is of the same spir
the one used by Mao, Cates, and Lekkerkerker@32#. Instead
of integrating over the degrees of freedom of the small p
ticles in the partition function we follow Ref.@12# and re-
write the Ornstein-Zernike equation for the density profi
~15! in the form of Eq.~18!. The effects of the contracte
component are then taken care of in the direct correla
functionsc11

eff(r ) and cw1
eff (r ) of the contracted system. Th

wall-particle depletion potential is obtained fromcw1
eff (r ) by

employing a closure relation; for reasons of simplicity w
have used the mean spherical approximation~MSA!, but any
other more sophisticated closure relation could have b
used as well.

The effective direct correlation functioncw1
eff (r ) is given in

terms of the direct correlation functions of the contract
components. Introducing simple approximations for the l
ter, it has been shown that the Asakura-Oosawa results
low immediately. But our main interest has been to sh
how these results change when the assumptions of
Asakura-Oosawa theory no longer apply. From the num
cal solution of the full set of OZ equations it is possible
calculate the wall-particle depletion potentials for arbitra
concentrations of all components of the mixture. Furth
more, energetic contributions to the depletion forces can a
be included in order to describe more realistic systems t
that composed by only hard spheres.

Finally, our approach assumes through Eqs.~8! and ~20!
that depletion forces are pairwise additive. Direct compu
simulations by Dijkstra, van Roij, and Evans@33# have re-
cently shown the correctness of this assumption for h
sphere mixtures, even in regimes where one might expec
approximation of pairwise additivity to fail. Although it wa
still not proven for inhomogeneous mixtures of charged a
uncharged particles, we also neglect effective triplet inter
tions in that case.
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P. GONZÁLEZ-MOZUELOS AND J. M. MÉNDEZ-ALCARAZ PHYSICAL REVIEW E 63 021201
J.M. Méndez-Alcaraz, and R. Klein, J. Chem. Phys.95, 2006
~1991!.

@16# P. Gonza´lez-Mozuelos, J. Alejandre, and M. Medina-Noyol
J. Chem. Phys.95, 8337~1991!.

@17# P. Gonza´lez-Mozuelos, J. Alejandre, and M. Medina-Noyol
J. Chem. Phys.97, 8712~1992!.

@18# P. Gonza´lez-Mozuelos, J. Chem. Phys.98, 5747~1993!.
@19# P. Gonza´lez-Mozuelos and J. Alejandre, J. Chem. Phys.105,

5949 ~1996!.
@20# G. Rodrı́guez and L. Vicente, Mol. Phys.87, 213 ~1996!.
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