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Energetic contributions to wall-particle depletion forces
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Recently, depletion forces were accounted for by a contraction of the description based on the integral
equations theory of simple liquid®Phys. Rev. B61, 4095(2000]. The extension of those results to the case
of inhomogeneous systems is reported here. Besides, the energetic contributions to the wall-particle depletion
forces are studied, as they arise as soon as charge is put on some of the components of a binary mixture of hard
spheres on the front of a hard wall. By charging the small particles the amplitude of the depletion attraction
between wall and large particles is reduced, and can even become a repulsion. A similar effect is observed if
an attractive interaction between wall and small particles is present.
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[. INTRODUCTION forces in more general cases of inhomogeneous systems, for
example, when the wall has a relief pattern, or when the
The term depletion forces originally refers to the attrac-confining geometry is more complex. The general problem
tion between two colloidal particles arising when macromol-of the theoretical determination of the structure of inhomo-
ecules are put into the suspensfar2]. This results from the geneous colloidal suspensions has received a considerable
expu|sion Of added macromo'ecules from the gap betweeﬁmount Of attention in the |aSt decade. Two main approaches
two approaching partic'es1 g|v|ng rise to an imbalance behave been considered for the determination of the local con-
tween the osmotic pressures within the gap and outside ige_ntration of coI_IoidaI particles: one.based on the implemen-
The phenomenon has been successfully studied in the usdafion of Ornstein-Zernik¢OZ) equations for the concentra-
case that the system can be modeled as a binary mixture §pn profile, also known as integral equations methfis—
hard sphere$3—9]. Therefore, depletion forces have been 23], and the other one based on the density functional theory
accepted as a special case of the entropic forces responsil@FT) [9,24—27. With regard to the relative merits of each
for the rich phase behavior of hard particles systems. Howapproach it can be said that the DFT methods provide a
ever, recent experimental and theoretical results show thatuantitatively better description of the spatial distribution of
depletion forces can be strongly affected if van der Waals oParticles, but the approach based on the OZ equations is far
Coulombic interactions are present in the systgr@,11.  €asier to implement, and also provides a very good qualita-
They may reduce the amplitude of the depletion attraction afive description of the concentration profiles. In particular,
Contact, or even invert it to a repu|si0n_ As shown bythe pOSitionS of the maxima and minima of those profileS are
Méndez-Alcaraz and Kleifi12], this behavior can be better Very well accounted for by the integral equation methods.
understood by considering depletion forces as a special cas/en more, the OZ equations are the natural starting point
of the more general effective interactions resulting from afor the implementation of the contraction formalism from
contraction of the description of liquid mixtures. Therefore, Which the effective external potentials are determined, as we
if certain components of a mixture are not explicitly consid-€xplain in Sec. II. In that section, we also present a brief
ered, their influence on the structure of the remaining pardiscussion about the connection between the DFT and the
ticles has to be included in the interaction potential. TheOZ equations. Our results are then used in Secs. lll and IV in
latter is obtained by demanding the spatial distribution of theorder to study the energetic contributions to the wall-particle
remaining particles to be the same as in the original mixturedepletion forces arising from the charging of some of the
Technically, this is done by rewriting the Ornstein-Zernike COmponents of a binary mixture of hard spheres in front of a
equation for the original mixture as an effective Ornstein-hard wall. Finally, the paper is closed with a section of con-
Zernike equation for the remaining particles, and connectinglusions.
it with the effective interaction potential using an appropriate
closure relation. This idea was first implemented by Medina- Il. EFFECTIVE POTENTIALS
Noyola and McQuarrie in order to calculate the interaction o )
between two charged macroions immersed in a bath of small 1he structure of a homogeneous liquid mixture of
counterions and salt ionfL3], as well as in further ap- sphencal components can be determined from the OZ equa-
proaches to the same problda¥]. tion [28],
In Ref.[12] Méndez-Alcaraz and Klein studied the deple- o
tion forces in homogeneous mixtures of large hard spheres ~ = ~ Lol
immersed in a batf? of charged or unchargged smaIFI) hard h”(q)_c”(quZl MNehi(@Ci(a); - 1,j=1---.p,
spheres. The behavior near a hard wall was obtained in the 1)
dilute limit by indefinitely increasing the diameter of one of
the large components of a ternary mixture of hard spheresyritten here in the Fourier spaéthis feature being indicated
That approach, however, is not suitable to describe depletioby the tilde, as well as by the dependence on the wave num-
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ber q), complemented with suitable closure relations be-in order to obtain the effective interaction potentiafﬁ(r)
tweenh;;(r) andc;;(r) which also involve the correspond- between observed particles. This contraction of the descrip-

ing pair potentialau;j(r) and have the general forf28] tion is the origin of depletion forces when the added macro-
molecules are the unobserved spe¢iEs.
Cij(r)=—pu;(r)+hi(r)=In[1+h;;(r)]+b;(r), (2) In order to extend the previous results to inhomogeneous

. ) o i _ systems, let us consider a multicomponent fluid of spherical
with some approprlale approquanon for the bridge fU”Ct'O“particles subject to the action of external fields. kef(r)
bi;(r). The functionsh;;(q) andc;;(q) are the total and di- be the external potential acting on all the particles of species
rect correlation functions, respectively. The coefficients i at positionr. The equilibrium local number density of par-
are the partial number densities. With a matrix notation Eqticles of this species at, denoted byn;(r), is related to the

(1) takes the form corresponding external potential by the equation
H(d)=C(a)+C(a)NH(q), 3) ni(N =2z exp— Bi(N)+cP{n(}rD, (9
whereH(q), C(g) andN are symmetric square matrices of wherez; is the fugacity of speciel andci(l)[{n(r)},r] is a
componentg H(q)];;=h;;(q), [C(q)];=C;(q), and[N];  functional of the local concentration which represents the
=n;5; . contribution to the chemical potential due to the interaction

The structure of liquid mixtures is usually studied by of @ particle of specieslocated atr with all the other par-
means of experimental techniques that are unable to deteti¢les in the system. The functionaf”[{n(r)},r] is also the
all the components. For example, light scattering experigenerator of a hierarchy of direct correlation functions de-
ments do not detect the salt ions nor the water molecules ifined by
an aqueous suspension of polystyrene spheres, except for

their effects on the structure of the colloidal particles. There- . 1) B SeI{n(r)},rq]
fore, models including the experimentally unobserved spe-cii N2, P mea] = oni(ry)- - - SN(Fms1)
cies are necessary in order to interpret the experimental re- (10

sults for the observed components. According to this

distinction between observed and unobserved componentt) particular,ci(jz)[{n(r)},rl,rg] corresponds to the OZ direct

the matrices appearing in Eq3) can be partitioned in correlation function between speciesindj of the nonuni-

blocks, form fluid. Let us also assume that the system is in thermo-
dynamic equilibrium with an infinity reservoir within which

Xaa Xag Yni(r)=0, for alli. The local concentration of each compo-
X= Xga Xga)' nent is then uniform within the reservoir, being the corre-
sponding bulk number density of specie§ aking the func-
and Eq.(3) itself can be rewritten as tional Taylor expansion ot{”[{n(r)},r;] with respect to
the conditions in the reservoir it is found that this can be
Haa(d) = Caa(d) + Caa(d)NaaHAA(Q) rewritten as
+Car(q)NggHga(d), 4 . n &
cf )[{n(r)},rl]=|n2+zl J'd3r20ij(|rl_r2|)
Hgs(d) = Cgg(q) + Cga(d)NegHpa(d) boIT
+Cpa(d)NaaHAA(Q). 5 X[ny(r2) =0yt bui(ra), (1)

_ (2 _ . .
The indicesA and B refer to the observed and unobservedWhere C_iJ(|r1_r2_|)_,Ci(i )[{n(r)}—{p},rl,rz] is the direct
subsets, respectively. Solving B§) for Hgg(q) and substi- correlation function in the reservoir, and the bridge function

tuting the result into Eq4) yields byi(ry) is the sum of the_corresponding third and higher
order terms of this expansion. Therefore, E®). can be re-
Haa(q)=Can(q)+ CaM(q)NaaHAA(Q), (6)  Written with the form of the OZ equation:
P
where / / /
hwi(r):CWi(r)+j21 an dr ' cij(|r—r'Dhy;(r");
CRA(Q) =Caa(@) +Cas()[Ngg — Cea(@)] *Cen(q).
(7 i=1,--,p, (12

Equation(6) has the same structure as E8). and can there- | here use has been made of the definitions
fore be interpreted as an effective OZ equation for the ob-

served components. Besid@if,&(q) can be used together ni(r)
with a closure relation of the general form hyi(N=——-1 (13
I

cif(r)=—put(r)+hy(r)=In[1+h;(N)]+bf(r) (8  and
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Cwi(r) == Bihyi(r) +hyi(r) = In[1+hy,;(r)]+by(r). IIl. MODEL AND APPROXIMATIONS

(14) In order to model suspended hard sphélaiseled here as

Equations(12) and(14) are the OZ equation for the concen- species Land charged or uncharged macromo_lecmlmej
cies 2 on the front of a hard wall we take the interparticle

tration profile and the general form of its closure relations,, ; :

respectively. They are exact and provide a general method {gteraction potential

calculate the local concentrations of particles induced by ex-

ternal fields, if the direct correlation functions in the reser-

voir and the functional dependence lmf;(r) are known. In

practice, however, it is necessary to introduce some approxi-

mations at this level, since this information is usually lack- @ KT

ing. :K”T for r=0y;, (21
As in the homogeneous case, we can also use a matrix

notation here. In Fourier space H32) leads to

Hw(a)=Cy(a)+C(q)NH(a), (19
Tj

whereH,(q) and C,(q) are column vectors with compo- Bipwi(x) =+ for x< 2

nents[Hy(q) ]i=hyi(q) and[C,,(q)]i=cwi(d). The square

matricesC(q) andN refer to the homogeneous reservoir and o

are the same as in E(B). This equation can also be parti- =Kyie * for x= L (22
tioned in blocks according to the distinction between ob- 2

served(A) and unobserve) species:

O'i+0'j
2 1

Buij(r):+00 for r<0’ijE

and the potential

between particles and wally; being the diameter of the

Hywa(q) =Cya(d) + Caa(q)NaaHwa(d) componenti. The valuesk,;=K;,»=K,;=K,,;=0 ensure
the hard core interaction between the colloidal particles, and
*+Cas(d)NesHwe(q), (16) between them and the other compondppislymer coils and
wall). By takingK,,=0 the macromolecules are modeled as
Hywe(d) =Cyp(d) + Cep(a)NgeHws(a) Yukawa spheres, which assumes that the polymer concentra-
+Caa(q)NasHwA(Q)- 17) tion is within the highly dilute regime and that the ionic

concentration is high enough to consider that the configura-
Solving Eq.(17) for H,,g(q) and substituting the result into tion of each coil is basically globular. It should be noted that

Eq. (16) yields the Yukawa modc_al is itself an effective potential resulting
from the contraction of the solvent molecules and of the
Hya(@) = Ca(d) + CEA(A)NaaHwa(Q), (18  small ions(counterions and salt ionfrom the description of
the original system; their effects are containedip and in
where k. In addition,K,, goes as the square of the charge of the
coils [13,14]. Furthermore, by taking(,,,# 0, a Coulombic
ce“( =C -1 -1 interaction between coils and wall is accounted for within the
wA(@) = Cya(d) + Cag(d)[Ngg — Cga(d)]~Cyp(a),

(19) Yukawa model; the value &,,, depends on the product of
the charge of the polymer coils and the surface charge den-
andC&"(q) is given by Eq.(7). By analogy with Eq(14) it sty on the wall[15]. Moreover, Eq(22) can also be seen as
seems natural to define the corresponding effective external rough model for polymer-wall van der Waals interactions,

potentials¢§vf{(r) by the equation with K, staying for the Hamaker constant, arcaccount-
ing for the range of the potential.
cMiry=—By(r)+hyi(r) —In[1+hy,(r)]+b(r). The wall-particle depletion potentiabS" (x) is obtained

(20 by taking the polymer coils out of the picture. It is done here
within the mean spherical approximatioMSA) [28]:
A suitable approximation fob\?vfif(r) should be used here in
order to get a closed set of equations. o1
In order to calculate the effective external potentials hyi(x)=—-1 for x<—-,

2
1//\?vfif(r), we have first to determine the direct correlation func-
tions ¢;j(r) in the reservoir by solving Eqg1) and (2).
i - : o
Then, c5i(r) can be determined according to E49) by c%fi(x)=—/3¢f5£(><) for xa?l, (23)

solving Eqgs.(12) and (14). Finally, Sf{(r) can be deter-

mined by means of Eq20). In the process, some approxi-

mations for the bridge functionby;(r),by(r) and bgf(r)  obtained from Eq(20) after neglectingi(x) and lineariz-
must be introduced. The kind of approximations used in thisng the logarithm. With Eq(19), it leads to,Bz,//\‘,*Vf{(x)z +

work will be discussed in Sec. Ill. for x<o4/2 and
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o Combined with Eq(1), these closures provide a complete set
dXx’cya(X") of integral equations that we numerically solve for(r),
- Cio(r)=cCyy(r), and cyy(r) by means of a five parameters
o Cor(Q) version of the Ng methofB1]. The wall-particle correlations
X f dssF 1 (24

BYET(X) = —Cp1(X) — 277N, J

—_— are then obtained from E@12) by using also MSA:
[1—nyCoy(q)]

x—x'|
. . . . 01,2
for x=0,/2, where the involved integral was rewritten in a hupax)=—1 for x<—=,
simple form[29] (F ! denotes an inverse Fourier trans-
form). When the system consists only of hard objed{s( o1p
=Kw2=0) we get for the infinite dilute limit oi,, up to CurAX)=— By AX) for X?T'. (30)
linear terms inn,,

. . The resulting equations are linear and we solve them for
B (x)= _27Tnzf dX'sz(X’)f ds s 6y(s), cw1(x) andc,,(x) by means of the same numerical scheme
—o [x—x"]| applied in previous work$15]. In Sec. IV we present the
(25  results obtained from the scheme resumed here, varying the
different parameters that characterize this model in order to

With Cyy(r)=—1 for r<oy and 0 elsewhere, and,(x) analyze their impact on the general behavioBefe" (x).

=—1 for x<o,/2 and O elsewhere. After integratting this
equation we recover the Asakura-Oosawa potential for a par-
ticle near a hard wall12], a result also derived by Gxel-

mannet al.[7] by a rather different method: All the effective wall-particle potentials presented in this

2 h section correspond to a size ratig/o,=10 and to a dimen-

1+3ﬂ+2_) (26) sionless screening parame.be&z.:l.SS, which are typical
o2 0 values. The results shown in Figdalland Xb) correspond

. . to the infinite dilute limit of macroparticlesg;=0) in front
for 0<h<o, and 0 for larger distances. Hefe=x—01/2is  f 3 neutral wall K,,,=0) for two different concentrations

the distance from the surface of one particle of species 1 tg¢ ,nobserved particlesp,=0.008 ande,=0.02, respec-
the wall, andg; = 7n; /6 the volume fraction of speciés tively. They illustrate the process in which the electrostatic
Expression(26) has been found to be an excellent approxi-repulsion between the polymer globules is increased, starting
mation by comparison with direct measurements of depletioRyith neutral coils K,,=0, solid line, passing through,,
potentials in inhomogeneous mixtures of colloid and non-—1g (dashed ling and K,,="50 (dotted ling, and finally
ionic polymers[30]. In the same dilute limit it is also pos- reachingK ,,= 156 (circles. It can be immediately appreci-
sible to get analytical results fg8y/41(x) whenK,,#0 by  ated that during the charging process the effective wall-
putting in Eq. (25 cwp(X)=—1 for x<o,/2 and macroparticle potentiaBy<f(x) becomes more structured,
—Kype " for x=0/2. However, such approximations be- j e |onger ranged and with wider oscillations. In particular,
come inappropriate since they neglect the correlation beqe attractive well at contactxe o4/2) that this potential
tween coils, which may be dominant when charge is presengyhipits whenk,,=0 is gradually transformed into a repul-

In the general case we use Efi8) for x=0/2, rewritten  gjye barrier when the repulsion among the unobserved par-

IV. RESULTS AND DISCUSSION

By (h)=— ¢,

—=1
02

in the form[29] ticles is incremented. This last feature is attributable to the
. increased concentration of small particles in the immediate

Biiar(¥)= —hwl(X)—an1J dx’hyy () vicinity of the wall induced by the electrostatic pushing ex-
— erted by the remaining small particles, i.e., those located far-

B ther from the wall, a characteristic that has been described in
% J dss éleflf(s) 27) previous workg15]. ' . .
[x—x'| From the comparison of Figs.(d and Xb) it also be-
, , ) , ) , comes clear that the effects described above are even more
instead of Eq.(24), since in this way we avoid calculating \qticeaple for higher concentrations of polymer globules.
Cwi(x) for x<o;/2. An accurate input for the correlation this complementary process is more clearly illustrated in
functions in Eq.(27) is necessary. We determine them by gy 5 '\hich again presents the results corresponding to an
using MSA for the correlations involving hard spheres: infinite dilution of macroparticles¢,;=0) in front of a neu-
tral wall (K,,»,=0), but explicitly showing the evolution of
Bw\?ﬂ(x) when the pair interaction among the unobserved
__ - particles is kept fixedK,,=0 in Fig. 2a) andK,,=10 in
C11.147) Bunadr) for r=0112 28 Fig. 2(b)] while their concentration is increased frogy
and the hypernetted chain approximati¢tNC) [28] for the ~ =0.008(solid line), to ¢,=0.02 (dashed ling and then to
charged component: ¢»,=0.08 (dotted ling. In the case of neutral polymer glob-
ules[K,,=0, Fig. 2a)], this process leads to a larger and
Coo(I)=—BuUx(r)+hos(r)—In[1+hy(r)]. (290  larger attraction at contact whereas at the same time a no-

hll’lir): -1 fOI’ I’<0’11‘12,
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FIG. 1. The figure shows how the wall-particle depletion poten- ~ FIG. 2. The figure shows how the wall-particle depletion poten-
tial Byc(x) changes when the electrostatic repulsion betweerfial B4 (X) changes when the concentration of added macromol-
added macromolecules increases; starting with neutral ciijs ( €cules increases; starting with,=0.008 (solid lines, passing
=0, solid lines, passing throughk ,,= 10 (dashed linesandK,,  through ¢,=0.02 (dashed lines and finally reachingp,=0.08
=50 (dotted lineg, and finally reachingk,,=156 (circles. The  (dotted lineg. The displayed results correspond to the infinite dilute
displayed results correspond to the infinite dilute limit of macropar-limit of macroparticles ¢,;=0) in front of a neutral hard wall
ticles (p;=0) in front of a neutral hard wallK,,=0) for two (Ky2=0) for two different values of the electrostatic repulsion be-
different concentrations of unobserved particles;¢,=0.008 and  tween the unobserved particlég) K,=0 and(b) K;,=10.

(b) ¢,=0.02.

separate regions. In the region closest to the wedt §),

ticeable barrier develops at a distance of roughlyfrom  the most noticeable change on the shapgsm,q(x) due to
contact, i.e., a distance corresponding to the position of théhe increment of the macroparticle concentration is again an
first layer of polymer globules adjacent to the wall, featuresamplification of the oscillations contained within this region.
that have been previously discussed by other autf@is)]. In the case of neutral unobserved particlEgy. 3), the at-
In the case of charged polymer globulés,,= 10, Fig. 2b)]  traction at contact becomes deeper and the first peak be-
the contact value oBz//fo{(x) becomes instead more repul- comes higher when the concentration of macroparticles is
sive whene, is increased, leading to a large barrier in theincreased. For the cases of charged polymer glolitigs. 4
vicinity of the wall for the maximum value o, illustrated and 9, the potential barrier adjacent to the wall becomes
in Fig. 2(b). more repulsive whereas the first valley becomes more attrac-

The effects of a finite concentration of macroparticles ardive when ¢, is incremented. Besides, in the second region
illustrated in Figs. 3—6, which show results of the effective(x= o) the effective wall-macroparticle potentials in these
wall-particle potentials that correspond ,,=0 (hard three figures exhibit an oscillatory, although relatively small,
wall) and ¢,=0.02. In particular, Figs. 3, 4, and 5 show the structure in the case a@f;=0.2 that is absent in the case of
comparison of the results fop;=0 (solid line) with the  ¢,=0. The structure of_%(//ﬁ\,f{(x) in this second region turns
results corresponding t@;=0.2 (dashed ling for the fol-  out to be roughly similar for the three different values of
lowing values:K,,=0 (Fig. 3, K»,=10 (Fig. 4, andK,, K,,, although once again the amplitude of its oscillations is
=50 (Fig. 5. In these three figures we can distinguish twoincremented, while the positions of the corresponding
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FIG. 3. The figure shows how the wall-particle depletion poten-  F|G. 5. The figure shows how the wall-particle depletion poten-
tial By (x) changes when the concentration of macroparticles in+jg| Byt

) e c AtIC w1(X) changes when the concentration of macroparticles in-
creases; going fronp,=0 (solid line) to ¢;=0.2 (dashed lingin  creases; going fronp;=0 (solid line) to ¢,=0.2 (dashed lingon

front of a neutral hard wallK,,=0). The displayed results corre- front of a neutral hard wall,,=0). The displayed results corre-
spond to a concentratiop,=0.02 of neutral macromolecules spond to a concentratiop,=0.02 of charged macromolecules
(K22=0). (K 5,=50).

maxima and minima remain almost invariant, when this paexpected that this long-ranged structure will become more
rameter is increased. This feature can be better appreciatedgievant for larger values af,.

Fig. 6, which shows the comparison of the graphics of the Finally, Fig. 7 illustrates the process of varying the sur-
effective wall-macroparticle potentials correspondingeto  face charge density of the wall while keeping fixed all the
=0.2 for K»,=0 (solid ling), K,,=10 (dashed ling and  other parameters. The results presented in this figure corre-
K2,=50 (dotted ling. An important feature shown in Fig. 6 spond tog;=0, ¢,=0.02, K»,=50, and to the sequence
is the length scale of the oscillations observed in it, which i< ,=2 (solid line), K,,=0 (dashed ling and K= —2
roughly of the order ofry, in contrast with the length scale (dotted ling. As the wall becomes more attractive with re-
of the oscillations in the regior=oy, which is roughly of  gard to the unobserved particles, the effective wall-
the order ofo,. This feature seems to indicate that the long-macroparticle potential becomes ever more repulsive at con-
ranged structure oBySh (x) is induced by the “holes” in  tact, and even for the relatively narrow range of values of

the distribution of unobserved particles created by the presk,, represented in this figure the change on the contact
ence of the macroparticles. Although the amplitudes of the

oscillations observed in Fig. 6 are rather small, it is to be L L 4 L L L
i " —K,,=0
1.5-|.|.|.’1’1|.|.|.|.|.|. 0.04 ':.‘ 22
1.0
X 051
% _ 1
S
>
a
0.00 4
-0.051
-0.10 1 o,
x/c,
6 8 10 15 20 25 30 35 40 45
X/CS2 FIG. 6. The figure shows how the wall-particle depletion poten-

tial ,sz\’fﬂ(x) in the far region x= o) changes when the electro-
FIG. 4. The figure shows how the wall-particle depletion poten-static repulsion between added macromolecules increases; starting
tial ﬁ://\?ﬂ(x) changes when the concentration of macroparticles in-with neutral coils K»=0, solid ling, passing through,,=10
creases; going fronp; =0 (solid line) to ¢,;=0.2 (dashed lingin (dashed ling and finally reachindg,,=50 (dotted ling. The dis-
front of a neutral hard wallk,,,=0). The displayed results corre- played results correspond to the concentratigr=0.2 of macro-
spond to a concentratiop,=0.02 of charged macromolecules particles in front of a neutral hard walK(,,=0), and to a concen-
(K5,=10). tration ¢,=0.02 of unobserved particles.
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25 L L L L L L =2) on the front of a wall one obtains as effective descrip-
1~ . K =-2 tion an inhomogeneous one-component system of particles
2.04 - w2 interacting between them, and with the wall through poten-
—_ S KW2=0 tials depending parametrically on the contracted component.
: — K =2 The approach developed in this paper is of the same spirit as
the one used by Mao, Cates, and Lekkerkefléa. Instead
of integrating over the degrees of freedom of the small par-
ticles in the partition function we follow Refl2] and re-
write the Ornstein-Zernike equation for the density profiles
(15 in the form of Eq.(18). The effects of the contracted
component are then taken care of in the direct correlation
functionsch(r) and c&(r) of the contracted system. The
054 wall-particle depletion potential is obtained frorrﬁ,ﬁl(r) by
5 & 7 & 8§ 10 11 1 employing a closure relation; for reasons of simplicity we
X/G have used the mean spherical approximatMdB8A), but any
other more sophisticated closure relation could have been

FIG. 7. The figure shows how the wall-particle depletion poten-used as well.
tial By (x) changes when the surface charge density of the wall The effective direct correlation functiaj;(r) is given in
varies; starting with an attractive walK(,,=—2, dotted ling, = terms of the direct correlation functions of the contracted
passing through a neutral walk(,=0, dashed ling and finally =~ components. Introducing simple approximations for the lat-
reaching a repulsive wallK(,,=2, solid line. The displayed re- ter, it has been shown that the Asakura-Oosawa results fol-
sults correspond to the infinite dilute limit of macroparticles; ( low immediately. But our main interest has been to show
=0) and to the concentratiap,=0.02 of charged macromolecules how these results change when the assumptions of the
(K22=50). Asakura-Oosawa theory no longer apply. From the numeri-

cal solution of the full set of OZ equations it is possible to
value of this effective potential turns out to be quite impor-calculate the wall-particle depletion potentials for arbitrary
tant. This effect is also explained by the larger or smallerconcentrations of all components of the mixture. Further-
number of charged polymer globules located on the surfaceore, energetic contributions to the depletion forces can also
of the wall when it becomes more attractive or more repul-be included in order to describe more realistic systems than
sive, and by the way that these globules in turn push théhat composed by only hard spheres.
macroparticles away from the wall. The effective interaction  Finally, our approach assumes through E&s.and (20)
of the wall on the macroparticles is then influenced by thethat depletion forces are pairwise additive. Direct computer
surface charge density of the former even though the macrssimulations by Dijkstra, van Roij, and Evaf33] have re-
particles themselves are neutral. cently shown the correctness of this assumption for hard
sphere mixtures, even in regimes where one might expect the
approximation of pairwise additivity to fail. Although it was
V. CONCLUSIONS still not proven for inhomogeneous mixtures of charged and

Recently, it has been shown how depletion potentialéj_nCh"’_‘rged particles, we also neglect effective triplet interac-
arise from contracting the full integral equation theory of alions in that case.
p-component mixture to an effective description on a level
which includes explicitly less thgmcomponent$12]. In this

paper, we extended those results to the case of inhomoge- The authors thank CONACyT-Mexico for financial sup-
neous systems. In the simplest case of a binary mixtpre ( port (Grant No. 26270-E
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